Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems (NeurIPS)DOI: 10.48550/arXiv.2005.11401 - Introduces the Retrieval-Augmented Generation (RAG) paradigm, establishing its core architecture and motivation.
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, Nils Reimers, Iryna Gurevych, 2019Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)DOI: 10.48550/arXiv.1908.10084 - Presents Sentence-BERT, a widely used method for generating semantically meaningful sentence embeddings, important for retrieval quality.
A Survey of Retrieval-Augmented Generation for Large Language Models, Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, Haofen Wang, 2023arXiv preprint arXiv:2312.10997DOI: 10.48550/arXiv.2312.10997 - Provides a comprehensive overview of RAG, including discussions on its components and various improvement techniques for both retrieval and generation.
Building a RAG system from scratch, Lewis Tunstall, Kashif Rasul, Alessandro Negri, Sourab Mangrulkar, Omar Espejel, Lysandre Debut, Patrick von Platen, 2023 (Hugging Face) - A practical guide to building RAG systems, providing explanations of data preparation, chunking strategies, and component selection.