Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems, Vol. 33 (Curran Associates, Inc.)DOI: 10.48550/arXiv.2005.11401 - Presents the foundational Retrieve-Augmented Generation (RAG) framework, which grounds LLM responses in external documents.
Retrieval Augmented Generation (RAG) Concepts, LangChain, 2024 - Provides practical guidance on implementing RAG systems, including managing and presenting source information in applications.