Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Narsimha Chilkuri, Max Bartolo, Jeff Lu, Minqi Jiang, Harun Šaríć, Fabio Soares, Yury Kastryulin, Leon Bottou, Sebastian Riedel, Pasquale Minervini, 2020NeurIPSDOI: 10.48550/arXiv.2005.11401 - Introduces the original Retrieval-Augmented Generation (RAG) framework, detailing how retrieved documents are used to augment a language model's generation process.
Lost in the Middle: How Language Models Use Long Contexts, Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Percy Liang, Matei Zaharia, 2023NeurIPS (Preprint on arXiv)DOI: 10.48550/arXiv.2307.03172 - Investigates the influence of context item placement on large language model performance, discussing phenomena such as recency bias in long contexts.
Prompt engineering, OpenAI, 2024 (OpenAI) - Provides practical guidelines for designing effective prompts for large language models, covering structuring instructions and integrating external information.
A Survey on Retrieval-Augmented Generation for Large Language Models, Yunfan Gao, Yun Xiong, Xinyang Feng, Zhangyang Wang, Xunlei Wu, Jie Zhou, Wenqi Wang, Peng Zhang, Song Guo, Cheng-Zhong Xu, 2024arXiv preprintDOI: 10.48550/arXiv.2312.10997 - Offers a comprehensive review of RAG systems, discussing various prompting strategies and context integration methods within the generation component.