Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing SystemsDOI: 10.48550/arXiv.2005.11401 - This foundational paper introduces the original Retrieval-Augmented Generation (RAG) model, detailing how it combines a pre-trained parametric memory (a seq2seq model) with a non-parametric memory (a pre-trained neural retriever) for improved knowledge-intensive NLP tasks.
Retrieval-Augmented Generation for Large Language Models: A Survey, Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, Haofen Wang, 2023arXiv preprint arXiv:2312.10997DOI: 10.48550/arXiv.2312.10997 - A recent survey offering a contemporary overview of RAG's advancements, covering its architecture, different design choices, evaluation methods, and ongoing challenges in integrating retrieval with large language models.