Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems (NeurIPS)DOI: 10.48550/arXiv.2005.11401 - The original paper introducing the Retrieval-Augmented Generation (RAG) framework, presenting its architecture and demonstrating the effectiveness of combining a retriever with a generator.
Dense Passage Retrieval for Open-Domain Question Answering, Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih, 2020Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)DOI: 10.48550/arXiv.2004.04906 - A seminal work on using dense vector embeddings for efficient and effective passage retrieval, which is fundamental to the 'search' stage described for the RAG retriever.
Retrieval-Augmented Generation for Large Language Models: A Survey, Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, Haofen Wang, 2024arXiv preprintDOI: 10.48550/arXiv.2312.10997 - A comprehensive survey of Retrieval-Augmented Generation, covering various retriever designs, optimization methods, and their influence on the overall RAG system performance.