GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klambauer, Andreas Maier, Sepp Hochreiter, 2017Advances in Neural Information Processing Systems, Vol. 31 (Advances in Neural Information Processing Systems) - 提出了双时间尺度更新规则(TTUR),通过为生成器和判别器设置不同的学习率来稳定GAN训练,并提供了支持其收敛特性的理论分析。
Generative Adversarial Networks, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, 2014Advances in Neural Information Processing Systems, Vol. 27 (NeurIPS Foundation) - 介绍了生成对抗网络(GANs)及其最小-最大博弈目标的基础性论文,为后续的GAN研究和优化挑战奠定了框架。
Improved Training of Wasserstein GANs, Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron C. Courville, 2017Advances in Neural Information Processing Systems, Vol. 30 - 通过引入带梯度惩罚的 Wasserstein GAN (WGAN-GP) 在GAN训练稳定性方面取得了显著进展,通过修改损失函数和正则化解决了常见的GAN训练失败问题。