Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, 2014Advances in Neural Information Processing Systems (NeurIPS) 27DOI: 10.48550/arXiv.1406.2661 - This foundational paper introduces Generative Adversarial Networks (GANs), defining the implicit density modeling paradigm and the adversarial training framework.
Variational Inference with Normalizing Flows, Danilo Jimenez Rezende and Shakir Mohamed, 2015Proceedings of the 32nd International Conference on Machine Learning (ICML), Vol. 37 (PMLR)DOI: 10.48550/arXiv.1505.05770 - Introduces normalizing flows, a class of tractable explicit density models that transform simple distributions into complex ones via invertible transformations.
Denoising Diffusion Probabilistic Models, Jonathan Ho, Ajay Jain, Pieter Abbeel, 2020Advances in Neural Information Processing Systems (NeurIPS) 33DOI: 10.48550/arXiv.2006.11239 - This work revitalized and popularized diffusion models, introducing the Denoising Diffusion Probabilistic Models (DDPMs) framework for high-quality image generation.