MLIR: A Compiler Infrastructure for the End of Moore's Law, Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, Oleksandr Zinenko, 2021Proceedings of the 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO) (IEEE and ACM)DOI: 10.1109/CGO51591.2021.9370308 - 介绍MLIR,一种用于异构硬件的多级IR框架,阐述其方言系统和渐进式降低方法,这对ML编译器中的指令选择至关重要。
Tensor Comprehensions: Framework-Agnostic High-Performance ML for GPUs, Nicolas Vasilache, Oleksandr Zinenko, Sam Gross, Zachary DeVito, Vaibhav Nagarajan, Jeremy Appleyard, Eric Johnson, Sirui Xie, Annie Liu, Lisa Lee, Tuanmho Nguyen, Andrew Adams, Jiri Simsa, Jeff Springer, Michael Garland, Trevor Elliott, Stephen Neuendorffer, Vijay Janapa Reddi, David Wong, Emina Torlak, Jonathan Ragan-Kelley, 2018Proceedings of the ACM on Programming Languages, OOPSLA, Vol. 2DOI: 10.1145/3276483.3276495 - 描述一种为深度学习生成高性能GPU代码的系统,侧重于其如何识别和利用NVIDIA Tensor Core等专用硬件特性。