Semi-Supervised Learning with Deep Generative Models, Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, Max Welling, 2014Advances in Neural Information Processing Systems (NeurIPS), Vol. 27 (Advances in Neural Information Processing Systems)DOI: 10.48550/arXiv.1406.5298 - Introduces the M1 and M2 models, foundational for integrated generative semi-supervised learning with VAEs.
Auto-Encoding Variational Bayes, Diederik P. Kingma and Max Welling, 2013International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.1312.6114 - Presents the original variational autoencoder framework and the Evidence Lower Bound (ELBO) objective, fundamental to VAEs.
Deep Semi-Supervised Learning: A Survey, Yahya Ouali, Jaehyun Shin, and Jean-François Lee, 2020arXiv preprint arXiv:2008.06023DOI: 10.48550/arXiv.2008.06023 - Provides a comprehensive survey of deep semi-supervised learning techniques, including a section on generative models.
Importance Weighted Autoencoders, Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov, 2015International Conference on Learning Representations (ICLR) (PMLR (Proceedings of Machine Learning Research))DOI: 10.48550/arXiv.1509.00519 - Introduces Importance Weighted Autoencoders (IWAE) for a tighter bound on the log-likelihood, improving VAE performance and mitigating posterior collapse.