Normalizing Flows for Flexible Priors and Posteriors
Was this section helpful?
Variational Inference with Normalizing Flows, Danilo Jimenez Rezende, Shakir Mohamed, 2015Proceedings of the 32nd International Conference on Machine Learning (ICML) - Introduces normalizing flows for variational inference, proposing planar and radial flows to build more expressive approximate posteriors in VAEs.
Improving Variational Inference with Inverse Autoregressive Flows, Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, Max Welling, 2016Advances in Neural Information Processing Systems, Vol. 29 (NeurIPS)DOI: 10.48550/arXiv.1606.04934 - Introduces inverse autoregressive flows (IAF) to create flexible posterior distributions, allowing efficient sampling and exact log-probability computation.
Density estimation using Real NVP, Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio, 2017International Conference on Learning Representations (ICLR)DOI: 10.48550/arXiv.1605.08803 - Presents Real NVP, a type of coupling layer flow that allows for both efficient density estimation and sampling, suitable for high-dimensional data.
Masked Autoregressive Flow for Density Estimation, George Papamakarios, Theo Pavlakou, Iain Murray, 2017Advances in Neural Information Processing Systems, Vol. 30 (NeurIPS)DOI: 10.48550/arXiv.1705.07057 - Details masked autoregressive flows (MAF) for density estimation, where log-probability evaluation is efficient while sampling is sequential.