Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006 (Springer)DOI: 10.1007/bpa2480 - Provides a fundamental exposition of Bayesian inference, conjugate priors (like Dirichlet), and their application to parameter estimation in probabilistic models.
Bayesian Networks and Decision Graphs, Finn V. Jensen and Thomas D. Nielsen, 2007 (Springer)DOI: 10.1007/978-0-387-68282-2 - Covers parameter learning methods for Bayesian Networks, focusing on the practical aspects and theoretical foundations relevant to discrete variables and Dirichlet priors.
CS228: Probabilistic Graphical Models, Lecture Materials, Daphne Koller and Stanford CS228 Course Staff, 2024 (Stanford University) - Official lecture materials covering Bayesian parameter learning for Bayesian Networks, including discussions on MLE, Dirichlet priors, and posterior inference.