Bayesian Data Analysis, Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin, 2013 (Chapman & Hall)DOI: 10.1201/b16018 - A comprehensive textbook on Bayesian inference, covering foundational concepts, computational challenges, and an introduction to approximate inference methods.
Variational Inference: A Review for Statisticians, David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe, 2017Journal of the American Statistical Association, Vol. 112DOI: 10.1080/01621459.2017.1285773 - A foundational review paper on variational inference, detailing its principles and utility for solving intractable Bayesian inference problems.
Monte Carlo Statistical Methods, Christian P. Robert, George Casella, 2004 (Springer)DOI: 10.1007/978-1-4757-4145-2 - A standard reference for Monte Carlo methods, providing theoretical background and practical applications of Markov Chain Monte Carlo for complex models.