Proximal Policy Optimization Algorithms, John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov, 2017arXiv preprint arXiv:1707.06347 (arXiv)DOI: 10.48550/arXiv.1707.06347 - The original paper introducing the PPO algorithm, a core method for policy optimization in reinforcement learning.
Training language models to follow instructions with human feedback, Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe, 2022Advances in Neural Information Processing Systems 36 (NeurIPS), Vol. 36DOI: 10.48550/arXiv.2203.02155 - Describes the application of PPO for fine-tuning large language models using a reward model derived from human feedback (RLHF), directly relevant to RLAIF's PPO phase.
Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan, 2022arXiv preprint arXiv:2212.08073DOI: 10.48550/arXiv.2212.08073 - A paper that describes using AI feedback (RLAIF) for aligning language models to principles, including the reward modeling and PPO-based fine-tuning approach.