Constitutional AI: Harmlessness from AI Feedback, Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan, 2022arXiv preprint arXiv:2212.08073DOI: 10.48550/arXiv.2212.08073 - Introduces the Constitutional AI framework, detailing the supervised critique phase and Reinforcement Learning from AI Feedback (RLAIF) for training aligned models.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, 2022arXiv preprint arXiv:2201.11903DOI: 10.48550/arXiv.2201.11903 - Presents Chain-of-Thought prompting, a technique to improve the reasoning abilities of LLMs, directly relevant for enhancing the quality of critiques generated by the critiquer model.