Training language models to follow instructions with human feedback, Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, Ryan Lowe, 2022arXiv preprint arXiv:2203.02155DOI: 10.48550/arXiv.2203.02155 - This paper details the supervised fine-tuning and reinforcement learning from human feedback process, offering context on common challenges in aligning language models.
LoRA: Low-Rank Adaptation of Large Language Models, Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, 2021arXiv preprint arXiv:2106.09685DOI: 10.48550/arXiv.2106.09685 - This paper introduces LoRA, a parameter-efficient fine-tuning technique mentioned as a strategy to mitigate issues like catastrophic forgetting during SFT.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, 2022arXiv preprint arXiv:2201.11903DOI: 10.48550/arXiv.2201.11903 - This work shows how strategic prompting can lead to complex reasoning, a useful method for improving the critiquer's ability to identify subtle violations.