Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020NeurIPS 2020DOI: 10.48550/arXiv.2005.11401 - Introduces the Retrieval-Augmented Generation (RAG) architecture, outlining its core components for integrating external knowledge with language models.
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks, Nils Reimers and Iryna Gurevych, 2019Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)DOI: 10.48550/arXiv.1908.10084 - Presents Sentence-BERT, a method for generating semantically meaningful sentence embeddings that are fundamental for semantic search and retrieval in RAG systems.
Retrieval-Augmented Generation for Large Language Models: A Survey, Yunfan Gao, Yun Xiong, Xinyue Zhang, Jiaqi Guo, Qinyuan Ye, Xuanjing Huang, Donglin Wang, Jiawei Liu, ZHAO-YAN LI and Haizhou Shi, 2023arXiv preprint (arXiv)DOI: 10.48550/arXiv.2312.44525 - A comprehensive survey of RAG systems, covering architecture, components, optimization strategies, and current research directions.