Holistic Evaluation of Language Models, Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda, 2023Transactions on Machine Learning Research (TMLR)DOI: 10.48550/arXiv.2211.09110 - This foundational paper presents a comprehensive framework for evaluating language models across diverse scenarios, helping readers understand benchmarks and metrics relevant to LLM application quality.
Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena, Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, Ion Stoica, 2023NeurIPS 2023 Datasets and Benchmarks TrackDOI: 10.48550/arXiv.2306.05685 - This paper details the effectiveness and limitations of using large language models as judges to evaluate the quality of other LLM outputs, directly relevant to semantic correctness testing.
Building LLM-Powered Applications: From Prompt Engineering to Production, Josh Harrison, Andrew Ng, Jon Krohn, Sinan Ozdemir, 2023 (O'Reilly Media) - This book offers practical guidance on the end-to-end development of LLM applications, covering design, testing strategies, and deployment considerations for building robust systems.