Causal Inference: What If, Miguel A. Hernán and James M. Robins, 2020 (Chapman and Hall/CRC) - A comprehensive textbook on causal inference, covering topics like time-varying confounding, marginal structural models, and G-computation, important for temporal data.
Inferring causation from time series: A review, Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou, Ethan Deyle, Celia Durán-Martín, Bedartha Goswami, Dhiren Jayaweera, Mark Kretschmer, Valerio Lucarini, Gisela Lovekamp, Norbert Marwan, Jorge Montano, Tom Osborne, Mathis Riehemann, Daniel Rosenblum, Jürgen Sardam, Peter Self, Jonathan Smith, Susanna Wernecke and Jonathan M. Wright, 2019Nature Communications, Vol. 10DOI: 10.1038/s41467-019-10105-3 - This survey article provides an overview of methods and challenges for causal discovery and inference in time series, suitable for understanding temporal dependencies, non-stationarity, and feedback.
Elements of Causal Inference: Foundations and Learning Algorithms, Jonas Peters, Dominik Janzing and Bernhard Schölkopf, 2017 (MIT Press) - Offers a statistics and machine learning perspective on causal inference, including structural causal models and extensions relevant to dynamic systems and temporal data.