ReAct: Synergizing Reasoning and Acting in Language Models, Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao, 2022arXiv preprint arXiv:2210.03629DOI: 10.48550/arXiv.2210.03629 - Introduces the ReAct framework, which interweaves reasoning and acting, influencing scratchpad memory and implicit planning for LLM agents.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems, Vol. 33 (Curran Associates, Inc.)DOI: 10.48550/arXiv.2005.11401 - A foundational paper on Retrieval-Augmented Generation, crucial for building long-term memory in LLM systems via vector stores.
Generative Agents: Interactive Simulacra of Human Behavior, Joon Sung Park, Joseph C. O'Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, Michael S. Bernstein, 2023arXiv preprint arXiv:2304.03442DOI: 10.48550/arXiv.2304.03442 - Examines the design of generative agents with complex memory and planning, demonstrating emergent human-like behavior.