Stochastic Games, Lloyd S. Shapley, 1953Proceedings of the National Academy of Sciences of the United States of America, Vol. 39 (National Academy of Sciences)DOI: 10.1073/pnas.39.10.1095 - Presents the seminal formal definition of stochastic games, establishing the theoretical framework for multi-agent sequential decision-making.
Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2018 (MIT Press) - Provides a general introduction to reinforcement learning (2nd edition), including discussions on game theory and multi-agent aspects that offer fundamental context for MARL.
Multi-Agent Reinforcement Learning: A Comprehensive Survey, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu and Sen Zhao, 2021Foundations and Trends® in Machine Learning, Vol. 14 (now publishers)DOI: 10.1561/2200000083 - This extensive survey offers an up-to-date look at multi-agent reinforcement learning, covering stochastic games, non-stationarity, and current solution approaches.