Communication-Efficient Learning of Deep Networks from Decentralized Data, Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas, 2017Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 54 (PMLR) - 介绍了联邦平均(FedAvg)算法,为联邦学习奠定了基础。
Advances and Open Problems in Federated Learning, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao, 2021Foundations and Trends in Machine Learning, Vol. 14 (now publishers)DOI: 10.1561/2200000083 - 对联邦学习的全面综述,讨论了统计异质性和系统异质性作为核心挑战。
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning, Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv Kumar, H. Brendan McMahan, 2020Proceedings of the 37th International Conference on Machine Learning, Vol. 119 (PMLR) - 提出了SCAFFOLD方法,以应对联邦学习中由统计异质性引起的客户端漂移。