Deep Learning with Differential Privacy, Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang, 2016Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Association for Computing Machinery)DOI: 10.1145/2976749.2978318 - Introduces the core techniques of differentially private stochastic gradient descent, including gradient clipping and the moments accountant for privacy budget tracking, directly relevant to DP gradient updates.
Communication-Efficient Learning of Deep Networks from Decentralized Data, Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas, 2017Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Vol. 54 (PMLR)DOI: 10.48550/arXiv.1602.05629 - The foundational paper that introduced Federated Averaging (FedAvg), providing the base algorithm upon which DP-FedAvg is built.
The Algorithmic Foundations of Differential Privacy, Cynthia Dwork, Aaron Roth, 2014 (Now Publishers)DOI: 10.1561/0400000042 - A comprehensive textbook on differential privacy, explaining its formal definitions, properties, and various mechanisms, including the Gaussian mechanism and sensitivity analysis.
Advances and Open Problems in Federated Learning, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G.L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao, 2021Foundations and Trends in Machine Learning, Vol. 4 (Now Publishers)DOI: 10.1561/2200000083 - A survey of federated learning, offering a broad perspective on privacy-preserving techniques like differential privacy within FL systems, useful for understanding the broader context.