Inverting Gradients-How much information do gradients reveal?, Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Rath, 2020Advances in Neural Information Processing Systems (NeurIPS) 33 (NeurIPS)DOI: 10.5591/00021 - This research presents more advanced and robust methods for reconstructing training data from gradients, further emphasizing the privacy risks in gradient sharing.
Advances and Open Problems in Federated Learning, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao, 2021Foundations and Trends® in Machine Learning, Vol. 14 (Now Publishers)DOI: 10.1561/2200000083 - A comprehensive review of federated learning, dedicating significant sections to privacy attacks, defenses (Differential Privacy, Secure Multi-Party Computation, Homomorphic Encryption), and open challenges in the field.