Communication-Efficient Learning of Deep Networks from Decentralized Data, H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas, 2017Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Vol. 54 (PMLR) - Introduces Federated Learning and the Federated Averaging (FedAvg) algorithm, establishing the fundamental approach for the field.
Advances and Open Problems in Federated Learning, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Martin Bober, Marc Buděšínský, Aaron Chow, Francisco Corella-Sáez, Heather Davis, K. Addison Debs, Mason R. Greenberg, Clement H. C. Guo, Ram Herlands, Paul K. Ireland, Maryann Y. Kamoun, Felix X. J. Kerschbaumer, Sanmi Koyejo, Tong Li, Sanja L. Fidler, Vladan Markovic, Dara Mirza, Alireza Narimani, Daniel Ogawa, José Augusto Pinto, Nicolas E. Ryffel, Sara Scalia, Lawrence I. Smith, Koray S. Tugan, William Wei, Galen Andrew, Sergey Arbuzov, Hugo Bagpipe, Blakeley H. B. Bauman, Zachary Charles, Geoffrey M. Hinton, Thomas P. M. Furlan, Jan Krcmar, Alon Z. G. Ravid, Andreas Terzis, Andrew C. T. Yao, 2021Foundations and Trends® in Machine Learning, Vol. 14DOI: 10.1561/2200000083 - A comprehensive survey of Federated Learning, discussing its principles, challenges (e.g., heterogeneity, privacy), and future research directions.
Federated Learning: Challenges, Methods, and Future Directions, Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith, 2020IEEE Signal Processing Magazine, Vol. 37 (IEEE)DOI: 10.1109/MSP.2020.2975572 - Offers a structured overview of Federated Learning's motivations, core workflow, system and data heterogeneity challenges, and various methods.
Federated Learning: An Overview of Concepts and Applications, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Martin Bober, Marc Buděšínský, Aaron Chow, Francisco Corella-Sáez, Heather Davis, K. Addison Debs, Mason R. Greenberg, Clement H. C. Guo, Ram Herlands, Paul K. Ireland, Maryann Y. Kamoun, Felix X. J. Kerschbaumer, Sanmi Koyejo, Tong Li, Sanja L. Fidler, Vladan Markovic, Dara Mirza, Alireza Narimani, Daniel Ogawa, José Augusto Pinto, Nicolas E. Ryffel, Sara Scalia, Lawrence I. Smith, Koray S. Tugan, William Wei, Galen Andrew, Sergey Arbuzov, Hugo Bagpipe, Blakeley H. B. Bauman, Zachary Charles, Geoffrey M. Hinton, Thomas P. M. Furlan, Jan Krcmar, Alon Z. G. Ravid, Andreas Terzis, Andrew C. T. Yao, 2021 (Morgan & Claypool Publishers)DOI: 10.2200/S01095ED1V01Y202104MLT082 - An authoritative book by many of the field's creators, providing an in-depth, structured explanation of federated learning principles and applications.