Deep Learning with Differential Privacy, Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang, 2016Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Association for Computing Machinery)DOI: 10.1145/2976749.2978318 - 提出差分隐私随机梯度下降(DPSGD),详细阐述了用于训练深度神经网络的梯度裁剪和高斯噪声添加等技术,对联邦学习具有重要参考价值。
Federated Learning with Differential Privacy: A Survey, Kang Wei, Junyi Zhang, Yushun Fan, Yonggang Wen, Han Hu and Qiang Yang, 2022ACM Transactions on Intelligent Systems and Technology (TIST), Vol. 13 (Association for Computing Machinery (ACM))DOI: 10.1145/3501704 - 该综述专门探讨联邦学习中的差分隐私,比较了中央差分隐私(CDP)和本地差分隐私(LDP),并讨论了各种噪声添加策略及其对模型效用和隐私保障的影响。