Communication-Efficient Learning of Deep Networks from Decentralized Data, Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Aguera y Arcas, 2017Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), Vol. 54 (PMLR) - 介绍了联邦平均(FedAvg)这一基础算法,并讨论了非独立同分布(Non-IID)数据带来的挑战,特别是统计异质性。
Towards Federated Learning at Scale: System Design, Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečný, Stefano Mazzocchi, H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, Jason Roselander, 2019Proceedings of the 2nd MLSys ConferenceDOI: 10.48550/arXiv.1902.01046 - 着重于大规模联邦学习部署的实际系统设计方面,解决了与系统异质性相关的客户端选择、通信和容错等问题。