Advances and Open Problems in Federated Learning, Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Grifo, Dimitri Lepage, Justin Michaels, Arjun Nandi, Ananda Theertha Suresh, Sewoong Oh, Felix X. Yu, 2021Foundations and Trends® in Machine Learning, Vol. 14 (Now Publishers)DOI: 10.1561/2200000083 - 本综述全面概述了联邦学习,内容涵盖统计和系统异质性、隐私、公平性以及评估挑战。
Learning with Differential Privacy, Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, Li Zhang, 2016Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS '16 (ACM)DOI: 10.1145/2976749.2978318 - 介绍了差分隐私随机梯度下降(DP-SGD),这是在机器学习中实现正式隐私保证的基本方法,与联邦学习的隐私评估相关。