Hardware-efficient variational quantum eigensolver for small molecules and materials, Abhinav Kandala, Ali Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, Jay M. Gambetta, 2017Nature, Vol. 549DOI: 10.1038/nature23879 - Introduces and experimentally demonstrates hardware-efficient ansätze for variational quantum eigensolvers on superconducting qubits, highlighting the importance of circuit depth, connectivity, and native gate sets for NISQ devices.
Barren plateaus in quantum neural networks, Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, Hartmut Neven, 2018Nature Communications, Vol. 9DOI: 10.1038/s41467-018-07090-4 - Explores the barren plateau phenomenon in quantum neural networks, where gradients vanish exponentially with the number of qubits, impacting trainability and underscoring the need for careful ansatz design.
Variational Quantum Algorithms, M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, Patrick J. Coles, 2021Nature Reviews Physics, Vol. 3DOI: 10.1038/s42254-021-00348-9 - A comprehensive review of variational quantum algorithms, including discussions on ansatz design strategies, hardware efficiency considerations, expressibility, and trainability challenges for NISQ devices.
Quantum Machine Learning: A Crash Course, Maria Schuld, Francesco Petruccione, 2021 (Springer)DOI: 10.1007/978-3-030-83098-4 - Provides an introductory yet comprehensive overview of quantum machine learning, including chapters on variational quantum algorithms and practical considerations for implementing QML models on current hardware.