Information Geometry in Classical and Quantum Models
Was this section helpful?
Methods of Information Geometry, Shun-ichi Amari and Hiroshi Nagaoka, 2000 (American Mathematical Society and Oxford University Press) - A foundational text that systematically introduces information geometry, covering classical statistical manifolds, Fisher information, and geometric methods in statistical inference.
Quantum Cramér-Rao bounds, Samuel L. Braunstein, Carlton M. Caves, 1994Physical Review Letters, Vol. 72 (American Physical Society)DOI: 10.1103/PhysRevLett.72.3439 - A seminal paper introducing the quantum Cramér-Rao bound and the Quantum Fisher Information, fundamental for quantum metrology and parameter estimation.
Natural Gradient Works Efficiently in Learning, Shun-ichi Amari, 1998Neural Computation, Vol. 10 (The MIT Press)DOI: 10.1162/089976698300017746 - The foundational paper introducing the natural gradient descent method, explaining its statistical justification and benefits for optimizing parameterized models on statistical manifolds.
Quantum natural gradient, James Stokes, Josh Izaac, Nathan Killoran, and Giuseppe Carleo, 2020Quantum, Vol. 4 (Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften)DOI: 10.22331/q-2020-05-25-269 - Introduces the quantum natural gradient algorithm for optimizing variational quantum circuits, demonstrating its potential for faster and more stable convergence compared to standard gradient descent.
Information Geometry for Quantum Technologies, Giacomo De Palma, Sune Gammelmark, 2022PRX Quantum, Vol. 3 (American Physical Society)DOI: 10.1103/PRXQuantum.3.017001 - A comprehensive review that provides a unified perspective on applying information geometry to various quantum technologies, including quantum metrology and quantum machine learning.