XGBoost: A Scalable Tree Boosting System, Tianqi Chen and Carlos Guestrin, 2016Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM)DOI: 10.1145/2939672.2939785 - 本文介绍了XGBoost及其底层优化原理,包括使用二阶泰勒展开式优化通用可微分损失函数,这对于实现自定义目标函数至关重要。
LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu, 2017Advances in Neural Information Processing Systems 30 (NIPS 2017) (Curran Associates, Inc.) - 介绍了LightGBM算法及其设计选择,它支持基于梯度和Hessian信息高效训练自定义目标函数。