Focal Loss for Dense Object Detection, Tsung-Yi Lin, Priyadarshini Krishnan, Dhruv Batra, Anitha Hariharan, Serge Belongie, 2017Proceedings of the IEEE International Conference on Computer Vision (ICCV) (IEEE)DOI: 10.1109/ICCV.2017.324 - Introduces Focal Loss, a specialized loss function for addressing class imbalance by down-weighting well-classified examples.
Parameters for Tree Booster, XGBoost Contributors, 2024 - Official documentation explaining the scale_pos_weight parameter for handling imbalanced datasets in XGBoost.
Parameters - LightGBM documentation, LightGBM Contributors, 2024 - Official documentation describing parameters like is_unbalance and scale_pos_weight for imbalanced learning in LightGBM.
SMOTE: Synthetic Minority Over-sampling Technique, Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer, 2002Journal of Artificial Intelligence Research, Vol. 16 (AI Access Foundation)DOI: 10.1613/jair.953 - Presents SMOTE, a widely used over-sampling approach for creating synthetic minority samples to address class imbalance.