Parameter-Efficient Transfer Learning for NLP, Neil Houlsby, Andrei Giurgiu, Stanislau Padolski, Quentin de Latour, Max Vladutu, Albert Verga, Quincy Hatcliff, Jason Riesa, Anna Schiff, Shauna Horn, Melvin Johnson, George Dahl, Orhan Firat, 2019Proceedings of the 36th International Conference on Machine Learning (ICML), Vol. 97 - 提出了适配器模块,即插入在Transformer层之间的小型神经网络层,实现了通过少量额外参数进行高效微调。
Prefix-Tuning: Optimizing Continuous Prompts for Generation, Xiang Lisa Li, Percy Liang, 2021Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Vol. Volume 1: Long Papers (Association for Computational Linguistics)DOI: 10.18653/v1/2021.acl-long.353 - 介绍了前缀微调,在每个Transformer层的输入中添加一小段可训练向量(前缀),冻结基础模型并减少了可训练参数。