Scaling Instruction-Finetuned Transformers, Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, Jason Wei, 2022arXiv preprint arXiv:2210.11416DOI: 10.48550/arXiv.2210.11416 - Describes the FLAN approach to instruction tuning, a core technique for teaching LLMs to follow instructions, for which synthetic data is generated.
Stanford Alpaca: An Instruction-Following LLaMA Model, Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, Tatsunori Hashimoto, 2023arXiv preprint arXiv:2303.08774DOI: 10.48550/arXiv.2303.08774 - Showcases a cost-effective method for generating high-quality instruction-following data, building upon and demonstrating the practical use of Self-Instruct.