BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, 2019Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) (Association for Computational Linguistics)DOI: 10.18653/v1/N19-1423 - Introduces BERT, a foundational model for contextual embeddings, including its 'Large' variant which is an example of a smaller LLM by modern standards.
Language Models are Few-Shot Learners, Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, Dario Amodei, 2020arXivDOI: 10.48550/arXiv.2005.14165 - Describes the architecture and scale of GPT-3, a seminal large language model with 175 billion parameters, showcasing its few-shot learning abilities.
Mistral 7B, Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed, 2023arXiv preprintDOI: 10.48550/arXiv.2310.06825 - Presents the Mistral 7B model, an example of a highly efficient and capable model within the smaller-to-medium parameter range.