The Information Bottleneck Method, Naftali Tishby, Fernando C. Pereira, William Bialek, 1998Advances in Neural Information Processing Systems 10 (MIT Press) - Introduces the foundational Information Bottleneck principle, defining the trade-off between compressing data and preserving relevant information.
Deep Variational Information Bottleneck, Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, Kevin Murphy, 2017International Conference on Learning Representations (ICLR 2017)DOI: 10.48550/arXiv.1612.00410 - Applies the Information Bottleneck principle to deep learning, proposing the Variational Information Bottleneck (VIB) and demonstrating its connection to Variational Autoencoders.
The Information Bottleneck Method (Chapter 24.3), Kevin P. Murphy, 2023 (MIT Press) - Provides a concise and modern textbook explanation of the Information Bottleneck principle, its mathematical formulation, and its role in representation learning from the book 'Probabilistic Machine Learning: An Introduction'.