Survey of Hallucination in Large Language Models, Ziqi Ji, Nayeon Lee, Pang Wei Koh, Shangyu Tong, Raghuveer Thirukovalluru, Chauncey Wang, Faisal Radwan, Sohee Park, Sana Malik, Xiang Ren, H. Andrew Schwartz, 2023ACM Computing Surveys (CSUR), Vol. 56 (Association for Computing Machinery (ACM))DOI: 10.1145/3613694 - 全面概述大型语言模型中幻觉的起因、检测和缓解策略。
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020Advances in Neural Information Processing Systems, Vol. 33 (Curran Associates, Inc.)DOI: 10.48550/arXiv.2005.11401 - 介绍了检索增强生成(RAG),一种将大型语言模型与外部知识关联起来的基础方法,是外部验证的核心技术。
Measuring and Improving Factual Consistency Using Natural Language Inference, Sean Welleck, Samira Paranjape, Jason Baldridge, Yejin Choi, 2019Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (Association for Computational Linguistics)DOI: 10.18653/v1/D19-1406 - 讨论了如何使用自然语言推理(NLI)来衡量和提高生成文本的事实一致性,直接适用于证据比较。