Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto, 2018 (A Bradford Book, The MIT Press) - 这本书全面阐释了表格方法及其局限性(如维度灾难),以及向函数逼近的根本性转变。
Human-level control through deep reinforcement learning, Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis, 2015Nature, Vol. 518DOI: 10.1038/nature14236 - 这篇开创性论文介绍了深度Q网络(DQN),展示了深度神经网络如何克服在高维状态空间环境中表格方法的局限性。
Deep Learning, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016 (MIT Press) - 这本权威教材全面解释了深度学习,为理解神经网络如何在现代强化学习中用于函数逼近提供了必要背景。