Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, 2014Advances in Neural Information Processing Systems, Vol. 27 (Curran Associates, Inc.)DOI: 10.48550/arXiv.1406.2661 - 介绍原始GAN框架,定义了最小最大目标及其与Jensen-Shannon散度的联系,这些是理解模式崩溃的基础。
Wasserstein GAN, Martin Arjovsky, Soumith Chintala, and Léon Bottou, 2017Proceedings of the 34th International Conference on Machine Learning, Vol. 70 (PMLR) - 提出使用Wasserstein-1距离作为GAN损失函数,以提供更稳定的梯度,并解决模式崩溃和梯度消失问题。
Improved Training of Wasserstein GANs, Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron C. Courville, 2017Advances in Neural Information Processing Systems 30 - 引入梯度惩罚来强制WGAN中的Lipschitz约束,显著提高了训练稳定性和样本质量。
Improved Techniques for Training GANs, Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, 2016Advances in Neural Information Processing Systems, Vol. 29 (NeurIPS)DOI: 10.48550/arXiv.1606.03498 - 提出包括minibatch discrimination在内的多项技术,以缓解模式崩溃并稳定GAN训练。