Improved Training of Wasserstein GANs, Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville, 2017Advances in Neural Information Processing Systems 30 (NIPS 2017)DOI: 10.48550/arXiv.1704.00028 - 提出了梯度惩罚方法,用于在Wasserstein GAN中强制执行Lipschitz约束,从而提高训练稳定性和性能。
Wasserstein GAN, Martin Arjovsky, Soumith Chintala, Léon Bottou, 2017Proceedings of the 34th International Conference on Machine Learning (ICML 2017)DOI: 10.48550/arXiv.1701.07875 - 介绍了Wasserstein GAN的理论框架,解决了传统GAN的局限性,并为WGAN-GP奠定了基础。