ApX 标志

趋近智


学习资源与工具
推动AI边界的突破

为引领AI未来的学生和专业人士提供行业领先的课程与实用资源。

最受欢迎的课程

如何构建大语言模型

掌握构建、训练和优化复杂大语言模型的工程技能。

约 80 小时

编程与深度学习

查看课程

Python Programming Fundamentals

Acquire the core Python skills needed to write clear, functional code and begin your programming path.

约 20 小时

No prior programming experience.

查看课程

高级Transformer架构

掌握现代大型语言模型高级Transformer架构的理论、数学与实现。

约 30 小时

深度学习与熟练Python

查看课程

LangChain for Production-Ready LLM Applications

Develop and operationalize complex, scalable LLM applications using advanced LangChain features and best practices.

约 32 小时

Python & Basic LangChain

查看课程

Practical Quantization for Large Language Models

Implement LLM quantization techniques (PTQ, QAT, GPTQ, GGUF) to reduce model size and improve inference speed.

约 15 小时

LLM Fundamentals & Python

查看课程

Python for LLM Workflows: Tooling and Best Practices

Build and manage LLM applications using Python, LangChain, LlamaIndex, and essential development practices.

约 18 小时

Intermediate Python skills

查看课程

RLHF: Reinforcement Learning from Human Feedback

Apply Reinforcement Learning from Human Feedback (RLHF) principles and techniques to align large language models.

约 24 小时

Advanced ML & DL knowledge

查看课程

Getting Started with PyTorch

Build and train fundamental deep learning models using PyTorch's core features like tensors, autograd, and neural network modules.

约 18 小时

Basic Python & ML knowledge

查看课程

Time Series Analysis and Forecasting

Analyze time-dependent data and build statistical forecasting models like ARIMA and SARIMA.

约 15 小时

Basic Python and Pandas

查看课程

Data Visualization with Matplotlib and Seaborn

Create insightful and customized plots using Python's essential Matplotlib and Seaborn libraries.

约 12 小时

Basic Python helpful

查看课程

Introduction to Machine Learning

Understand fundamental machine learning concepts and apply basic algorithms to build simple models.

约 14 小时

Basic Python helpful

查看课程

特征工程介绍

学习如何准备、创建和选择实用特征,以提升机器学习模型性能。

约 15 小时

Python基础,需掌握Pandas。

查看课程

深受机器学习学生与专业人士信赖

课程、参考资料和工具被全球顶尖高校和行业领先科技公司广泛使用与引用。

Stanford University
Massachusetts Institute of Technology
Peking University
Tsinghua University
Google Cloud
Alibaba
Bytedance

大师课

如何构建
大型语言模型

30章, 700+页深度内容

理解并构建最前沿语言模型的指南

前置要求: 扎实的编程与深度学习基础

立即阅读

最新文章与洞见

The AI Engagement Index: Countries Leading the AI Adoption in 2025

Jun 23, 2025

The AI Engagement Index ranks nations by their engagement in technical AI content, offering a fresh perspective on the global AI adoption.

Best Local LLMs for Every NVIDIA RTX 50 Series GPU

Jun 20, 2025

List for NVIDIA RTX 50 series GPU for running large language models locally. Discover the best LLMs for every card, master quantization, and optimize performance for privacy and speed.

How AI/ML Engineers Differ Across the World (US, India, China, and More)

Jun 19, 2025

Discover how AI and machine learning priorities differ across the globe. We analyze our user data to reveal the specific tools, techniques, and challenges that engineers from the US, India, China, Germany, and more are focused on right now.

How to Evaluate LLM Evaluations

Jun 16, 2025

Learn how to critically evaluate LLM benchmarks and choose the right model for your specific coding needs with our step-by-step guide.

PyTorch vs. TensorFlow: Comparison for Machine Learning Engineers

May 24, 2025

Choosing between PyTorch and TensorFlow? This guide details 5 differences covering API design, graph execution, deployment, and community, helping ML engineers select the optimal framework for their projects.

LLM GGUF Guide: File Format, Structure, and How It Works

May 24, 2025

Understand the GGUF file format, its architecture, benefits for LLM inferencing, and its role in local model deployment. This guide offers technical professionals essential knowledge for creating, quantizing, and utilizing GGUF files effectively.

5 PPO Variants for Enhancing RLHF Performance

May 23, 2025

Discover 5 Proximal Policy Optimization (PPO) variants designed to elevate your Reinforcement Learning from Human Feedback (RLHF) pipelines. This technical guide explains how these modifications address common PPO limitations, leading to better LLM alignment and performance.

How to Choose The Best Databases for RAG: Developer's Guide

May 22, 2025

Selecting the right database is fundamental for building high-performing RAG applications. This guide explores essential criteria, compares database types (vector-native vs. extended traditional DBs), and provides insights to help developers and ML engineers choose the optimal solution for vector search, scalability, and low-latency retrieval.