Python toolkit for building production-ready LLM applications. Modular utilities for prompts, RAG, agents, structured outputs, and multi-provider support.
Was this section helpful?
Judging LLM-as-a-judge with MT-Bench and Chatbot Arena, Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, Ion Stoica, 2023NeurIPS 2023 Datasets and Benchmarks Track (NeurIPS)DOI: 10.48550/arXiv.2306.05685 - Presents MT-Bench for evaluating multi-turn instruction following and conversational abilities, and rigorously analyzes the effectiveness and limitations of using large language models as evaluators for other LLMs.
HELM: Holistic Evaluation of Language Models, Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda, 2023Transactions on Machine Learning Research (TMLR)DOI: 10.48550/arXiv.2211.09110 - Proposes a comprehensive framework and a collection of scenarios and metrics for evaluating large language models across a wide array of dimensions, including instruction following and robustness.