BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, 2019Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Vol. Volume 1 (Long and Short Papers) (Association for Computational Linguistics)DOI: 10.18653/v1/N19-1423 - Introduces BERT, a prominent model for generating context-aware text embeddings, which are central to semantic search in LLM applications.
Vector stores, LangChain Team, 2024 (LangChain) - Official documentation for integrating various vector databases with LangChain, covering practical implementation for storing and retrieving embeddings.
Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks, Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela, 2020NeurIPS 2020DOI: 10.48550/arXiv.2005.11401 - Introduces the Retrieval-Augmented Generation (RAG) framework, demonstrating how retrieving information from a knowledge base (via vector search) improves LLM performance.