PyTorch C++ Frontend and API Reference, PyTorch Contributors, 2024 (PyTorch Foundation) - Provides comprehensive documentation for PyTorch's C++ frontend, including torch::Tensor, custom extensions, and interaction with ATen.
PyTorch: An Imperative Style, High-Performance Deep Learning Library, Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, Soumith Chintala, 2019Advances in Neural Information Processing Systems, Vol. 32 (Curran Associates, Inc.)DOI: 10.48550/arXiv.1912.01703 - Introduces the PyTorch framework, outlining its imperative design, dynamic computation graph, and efficient C++ backend for tensor operations.
Custom Autograd Functions in C++, PyTorch Contributors, 2024 - Explains how to implement custom autograd functions in C++ using torch::autograd::Function to enable automatic differentiation for custom operations involving ATen tensors.